Metrics
Sentry provides an abstraction called ‘metrics’ which is used for internal monitoring, generally timings and various counters.
The default backend simply discards them (though some values are still kept in the internal time series database).
Sentry Metrics Abstraction
In order to make metrics collection uniform across the entire sentry
codebase, we have an abstraction which exposes metrics collection with three methods.
incr
→ emits a counter metric.timing
→ emits a distribution metric (with thesecond
unit on Sentry metrics).gauge
→ emits a gauge metric (temporarily emits a counter, until the infra work is done).
Each method has three main parameters:
key
→ the name that uniquely identifies the metric. You will use the name to specify the metric when you want to plot it.value
→ the value of the value. You will plot the value of the metric.tags
→ the tags of the metric. You will use the tags to attach metadata to the metric, which can be helpful for aggregations.
To use the metrics abstraction you will first have to import it:
from sentry.utils import metrics
Once imported, you can start emitting metrics:
# Emit a counter.
metrics.incr(
"counter_name",
tags={"platform": platform}
)
# Emit a distribution.
metrics.distribution(
"gauge_name",
10,
tags={"nation": nation},
unit="second",
)
# Emit a gauge.
metrics.gauge(
"gauge_name",
10,
tags={"nation": nation}
)
# Emit a distribution (with default time-based unit).
metrics.timing(
"distribution_name",
100,
tags={"user_segment": user_segment}
)
If you want to measure how much time a specific piece of code takes, you can use:
# Emit a distribution metric of the execution time of the function.
with metrics.timer("my_func"):
my_func()
Statsd Backend
SENTRY_METRICS_BACKEND = 'sentry.metrics.statsd.StatsdMetricsBackend'
SENTRY_METRICS_OPTIONS = {
'host': 'localhost',
'port': 8125,
}
Datadog Backend
Datadog will require you to install the datadog
package into your Sentry environment:
$ pip install datadog
In your sentry.conf.py
:
SENTRY_METRICS_BACKEND = 'sentry.metrics.datadog.DatadogMetricsBackend'
SENTRY_METRICS_OPTIONS = {
'api_key': '...',
'app_key': '...',
'tags': {},
}
Once installed, the Sentry metrics will be emitted to the Datadog REST API over HTTPS.
DogStatsD Backend
Using the DogStatsD backend requires a Datadog Agent to be running with the DogStatsD backend (on by default at port 8125).
You must also install the datadog
Python package into your Sentry environment:
$ pip install datadog
In your sentry.conf.py
:
SENTRY_METRICS_BACKEND = 'sentry.metrics.dogstatsd.DogStatsdMetricsBackend'
SENTRY_METRICS_OPTIONS = {
'statsd_host': 'localhost',
'statsd_port': 8125,
'tags': {},
}
Once configured, the metrics backend will emit to the DogStatsD server and then flushed periodically to Datadog over HTTPS.
Logging Backend
The LoggingBackend
reports all operations to the sentry.metrics
logger. In addition to the metric name and value, log messages also include extra data such as the instance
and tags
values which can be displayed using a custom formatter.
SENTRY_METRICS_BACKEND = 'sentry.metrics.logging.LoggingBackend'
LOGGING['loggers']['sentry.metrics'] = {
'level': 'DEBUG',
'handlers': ['console:metrics'],
'propagate': False,
}
LOGGING['formatters']['metrics'] = {
'format': '[%(levelname)s] %(message)s; instance=%(instance)r; tags=%(tags)r',
}
LOGGING['handlers']['console:metrics'] = {
'level': 'DEBUG',
'class': 'logging.StreamHandler',
'formatter': 'metrics',
}
Composit Experimental Backend
The current implementation of the MetricsBackend
is known as CompositExperimentalMetricsBackend
. The CompositeExperimentalMetricsBackend
reports all operations to both Datadog and Sentry. For this reason, you will be able to see your metrics on both platforms.
SENTRY_METRICS_BACKEND = "sentry.metrics.composite_experimental.CompositeExperimentalMetricsBackend"
SENTRY_METRICS_OPTIONS = {
"primary_backend": "sentry.metrics.dogstatsd.DogStatsdMetricsBackend",
"primary_backend_args": {"statsd_host": "127.0.0.1", "statsd_port": 8126},
"allow_list": {
# List of metrics sent to Sentry (used for gradual rollout of DDM feature)
"my_metric1",
"my_metric2",
}